(a)	0.08 + 0.09 + 0.36 = 0.53	B1	1 1h			
(b)(i)		DI	1.10			
$(\mathbf{h})(\mathbf{i})$		(1)				
(0)(1)	$\left\lfloor \mathbf{P}(G \cap E \cap S) = 0 \Rightarrow \right\rfloor \underline{p = 0}$	B1	1.1b			
(ii)	$[P(G) = 0.25 \implies] \ 0.08 + 0.05 + q + "p" = 0.25$	M1	1.1b			
	q = 0.12	A1	1.1b			
(c)(i)	[5] r+"n" 5	(3) M1	2.1.			
	$ P(S E) = \frac{3}{12} \Rightarrow \frac{r+p}{r+p+0.09+0.05} = \frac{3}{12}$	MI Alft	5.1a 1.1b			
	$\begin{bmatrix} 12 & p \\ p \\ r \\$	A1	1 1h			
(ii)	$\begin{bmatrix} 12t & 0t + 0t + 0t \\ 0 & 0t + 0 & 0 \end{bmatrix} \xrightarrow{t \to 0} t = 0.20$		1.10			
(11)	$\begin{bmatrix} 0.08 + 0.03 + 0.12 + 0 + 0.09 + 0.10 + 0.30 + i - 1 & \rightarrow \end{bmatrix} \frac{i - 0.20}{i - 0.20}$	ын (4)	1.10			
(d)	$P(S \cap E') = 0.36 + a = 0.48$	(+) B1ft	1 1h			
	$P\left(\left[\left(S \cap E'\right)\right] \cap C\right) \text{"s"[[0,12] ord } P(C) 0.25 \text{ ord}$	DIR	1.10			
	$P([(S \cap E)] \cap G) = q [=0.12]$ and $P(G) = 0.25$ and	M1	2.1			
	$P(S \cap E') \times P(G) = "0.48" \times \frac{1}{4} \text{ or } 0.12$					
	$P(S \cap E') \times P(G) = 0.12 = P([(S \cap E')] \cap G)$ so are independent	A1	2.2a			
		(3)				
		(11 mar	ks)			
(9)	Notes					
(a)	BI IOI 0.55 (OI exact equivalent) [Anow 55%]					
(b)(i)	B1 for $p = 0$ (may be placed in Venn diagram)					
(ii)	M1 for a linear equation for q (ft letter "p" or their value if $0 \le p \le 0.12$) =	> by $p + q =$	= 0.12			
	A1 for $q = 0.12$ (may be placed in Venn diagram)					
(c)(i)	M1 for a ratio of probabilities (r on num and den) (on LHS) with num < den	and num	or den			
	correct ft. Allow ft of letter "p" or their p where $0 \le p < 0.86$ but "+ 0"	' is not req	uired.			
	1^{st} A1ft for a correct ratio of probabilities (on LHS) allowing ft of their p when	The $0 \leq p < $	0.86			
(ii)	2 nd A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only B1ft for $t = 0.2(0)$ (0.2.) or correct ft i.e. 0.42 (n + a + r) where n a ray	y 3/3	probe			
(11)	b = 0.2(0) (0.0.) or concert if i.e. $0.42 - (p + q + r)$ where p, q, r and		prous			
(d)	B1ft for $P(S \cap E') = 0.48$ (with label) (ft letter "q" or their value if $0 \le q \le$	B1ft for $P(S \cap E') = 0.48$ (with label) (ft letter "q" or their value if $0 \le q \le 0.12$)				
	M1 for attempting all required probs (labelled) and using them in a correct test (allow ft of q)					
	A1 for all probs correct and a correct deduction (no ft deduction here)	1 (5) (5)	F4 A 4 \			
SC	NO "P" It correct argument seen apart from P for probability for all 3 marks, a If unsure about an attempt using conditional probabilities please sen	ward (BON d to review	11A1) w.			
	and a construction of the second to review.					

Que	estion	Scheme	Marks	AOs
2(a)		$\frac{365}{1825}$ or $\frac{1}{5}$ or 0.2 oe	B1	1.1b
			(1)	
(b)		$\frac{170}{1825}$ or $\frac{34}{365}$ or awrt 0.093	B1	1.1b
			(1)	
	(c)	$90 \times 0.4 + 80 \times 0.05[= 40]$ or $90 \times 0.6 + 80 \times 0.95[= 130]$ or $740 \times 0.65[= 481]$ or $740 \times 0.35[= 259]$	M1	3.1b
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 A1	1.1b 1.1b 1.1b
			(4)	
(d)		$P(R' \cap F) = \frac{380}{1825} \left[= \frac{76}{365} = 0.208 \right] \text{ oe } \qquad \text{awrt } 0.208$	B1	1.1b
			(1)	
	(e)	$\left[\frac{133 + "130"}{1825} = \right]\frac{"263"}{1825}$ awrt 0.144	B1ft	1.1b
			(1)	
	(f)	$\frac{247 + "481"}{247 + "481" + 123 + "40"}$	M1	3.4
		$=\frac{728}{891}$ awrt 0.817	A1	1.1b
			(2)	
		Notes:	(10 n	narks)
		Look out for answers given in the question. If you see answers in the in the answer space those in the answer space take proceedence	ne question	n and
(a)		Allow equivalent		
(h)	B1	Allow equivalent		
(c)	M1	Correct method to find one of the values 40 or 130 or 481or 259		
		Implied by 40, 481, 259 or 130 seen in correct place on diagram		
	BI B1	One of the highlighted correct		
BI		A second value highlighted correct or their $(259^{\circ} + 481^{\circ}) = 740$ or		
		their $("40"+" 481") = 521$ or their $("40"+"130") = 170$		
	A1	Fully correct		
(d)	B1	380/18250e or awrt 0.208		
(e)	B1ft	Correct answer or Ft their 130 (> 0) do not allow if blank Allow ft correct to 3 sf.		
(f)	M1	For a single fraction with the numerator $<$ denominator and n is an interval of the numerator $<$ denominator n is an interval of the numerator $<$ denominator n is an interval of the numerator > 1	eger we w	ill
	1111	award for $n/891$ or $n/(\text{sum of their 4 values in } H, \text{ each } > 0)$ or awrt (0.817	
	A1	/28/891 oe or awrt 0.81/		

Qu 3	Scheme	Marks	AO
(a)	[0.13 + 0.25 =] <u>0.38</u>	B1	1.1b
		(1)	
(D)	e.g. $\left[P(B \cap C) = P(B) \times P(C) \implies \right] 0.3 = (0.3 + 0.05 + 0.25) \times (0.3 + p)$	M1	1.1b
	So $p = 0.2$	A1	1.1b
	[Sum of probabilities = 1 gives] $q = 0.07$	B1ft (3)	1.1b
(c)	$[P(A B') =] \frac{P(A \cap B')}{P(B')} \text{ or } \frac{0.13}{(1 - 0.6) \text{ or } (0.13 + "0.2" + "0.07")}$	M1	1.1b
	$=\frac{13}{\underline{40}} \text{or } \underline{0.325}$	A1	1.1b
		(2)	nrke)
	Notes	(0111	al K5 <i>)</i>
(a)	B1 for 0.38 (or exact equivalent)		
	If answers are given on Venn Diagram <u>and</u> in the script then the script	takes prec	edence.
(b)	M1 for a correct equation in p or $P(C)$ only.	с :	
	May be implied by an answer of $p = 0.2$ provided this does not come working	from inco	orrect
	Condone missing brackets if they get 0.2		
	Other rules for independence will give simple rearrangements of this e	equation.	
Beware	If $p = 0.2$ comes from incorrect working, we've seen $p = \frac{0.6}{0.3} = 0.2$, score M0A0		
	A1 for $p = 0.2$ (or exact equivalent)		
	B1ft for $q = 0.07$ (or exact equivalent) ft their p i.e. $q = 0.27 - 0.2$ where	e0,, p,,	0.27
(c)	M1 for a correct ratio of probability expressions <u>or</u> a correct ratio of prob	abilities	
	ft their values of p and q (provided both probabilities) or letters p and	q	
	A1 for 0.325 or exact equivalent. Correct answer only will score 2/2 NB on epen this is labelled M1 but treat it as A1		
	The on open ting is fabelied with but it cat it as A1		

Qu 4	Scheme	Marks	AO	
(a)	$P(S \cap \{X = 50\}) = P(S \cap \{X = 80\}) [= a \text{ constant}, V] \Longrightarrow b \times \frac{k}{50} = c \times \frac{k}{80}$ May see: $\frac{k}{50} = \frac{V}{b}$ and $\frac{k}{80} = \frac{V}{c}$ (condone any <u>letter</u> for V even S)	M1	3.1a	
	So $c = \frac{8}{5}b$ *	A1cso*	1.1b	
(b)	$d = 2b$ or $a = \frac{2}{5}b$ or $c = 4a$ or $d = 5a$ or $d = \frac{5}{4}c$	(2) M1 A1	2.1 3.3	
	$\frac{2}{5}b + b + \frac{8}{5}b + 2b = 1$	M1	2.1	
	$\Rightarrow 5b = 1$ so $b = \frac{1}{5}$ (o.e.)	A1	1.1b	
	$a = \frac{2}{25} b = \frac{1}{5} c = \frac{8}{25} d = \frac{2}{5}$	A1	3.2a	
(c)	[Experiment suggests for Nav] $P(S \{X = 100\}) = 0.3 \implies k = 30$	(5)		
	or $0.3 = \frac{V}{0.4} \Rightarrow V = 0.12$ So model won't work since	B1	2.4	
	$P(S X = 20) = \frac{30}{20} \text{ or } \frac{0.12}{0.08}$ and so would be greater than 1			
		(1) (8 marks)		
	Notes			
(a)	M1 for use of $P(S X = x) \times P(X = x)$ for $x = 50$ and $x = 80$ (Must see Any expression or equation MUST be based on the probability st	<i>k</i> or their tatements i	V) n qu.	
NB	Alcso for rearranging to required result, no incorrect work seen, condone poor notation Use of values e.g. $b = \frac{50}{20+50+80+100}$ to prove (a) is M0A0 but scores 2 nd M1A1 in (b)			
(b)	Marks for (b) may be awarded for work seen in (a) 1 st M1 for at least one other relationship (either probability the subject) from the list. 1 st A1 for a second different relationship (either probability the subject) from the list. <u>or</u> Allow for: $\frac{ak}{20} = \frac{bk}{50} = \frac{ck}{20} = \frac{dk}{100}$ for 1 st M1 1 st A1			
	20 50 80 100 2^{nd} M1 for using or stating sum of prob's = 1 May be implied by one correct probability. 2^{nd} A1 for one correct probability e.g. $b = \frac{1}{5}$ or exact equivalent such as 0.2			
	3^{rd} A1 for all correct probabilities. Allow exact equivalents e.g. $c = 0.32$ Sight of correct distribution or list of probs with no obvious incorrect working is 5/5			
(c)	B1 for deducing $k = 30$ and giving a suitable example to show model breaks down			

Notes on Question 4

1

The question essentially uses the definition of P(A | B) given in the formula booklet.

In particular
$$P(S | \{X = x\}) = \frac{P(S \cap \{X = x\})}{P(X = x)}$$

The first "blob" tells us that $P(S | \{X = x\}) = \frac{k}{x}$ where k is a constant.

The second "blob" tells us that $P(S \cap \{X = x\})$ is the same for all x so $P(S \cap \{X = x\}) = V$ where V is a constant.

Using these results in 1 gives $\frac{k}{x} = \frac{V}{P(X = x)}$ 2

Line 1 of MS for part (a) uses $V = P(X = x) \times \frac{k}{x}$ for x = 50 and x = 80

Line 2 of MS for part (a) uses 2 with x = 50 and x = 80

Other implications

Equation 1 can be rearranged to give $P(X = x) = x \times \frac{V}{k}$ 3

So when a + b + c + d = 1 is used this gives $1 = \frac{V}{k} (20 + 50 + 80 + 100)$ or $\frac{V}{k} = \frac{1}{250}$ [4]

In particular if we use this relationship in $\boxed{3}$ the probabilities *a*, *b*, *c* and *d* can simply be written down for example $b = \frac{50}{250}$ as given in the **NB** in the notes on the MS.

The point is that k and V will vary according to equation 4 but as part (c) shows there are some restrictions on the values k, and therefore V, can take.

Since
$$\frac{k}{x}$$
 is a probability then, ignoring the trivial cases*, $0 < \frac{k}{x} < 1$ and the "restricting" value of x is clearly $x = 20$ so $0 < k < 20$ and from 4 we get $0 < V < \frac{20}{250} = \frac{2}{25} = a$

So the restrictions on k and on V are given by the shortest distance and its associated probability.

* k = 0 would say Tisam can never get the ball in the cup no matter what the distance.

k = 20 says she always gets the ball in the cup for any distance.

Greg Attwood June 2023